

Center for Computational

Biology (CCB)

Learning Based Approaches for Brain Anatomical Structure Parsing/Segmentation

Zhuowen Tu, Ph.D.

Joint work with

Songfeng Zheng, Ivo Dinov, Alan Yuille, Katherine Narr, Paul Thompson, Arthur Toga

Brain Anatomical Structure Parsing

Why is the task important?

- Sub-cortical and cortical structures are of great anatomical and clinical importance.
- Their shapes provide viable information about brain growth and various diseases.
- We can use these anatomical structures as key landmarks to register different brain images for us to study the brain atlas and statistical properties.

Element of a disease-specific atlas (Thompson and Toga 2004)

Mapping hippocampal change in Alzheimer disease (Thompson et al. 2004)

Cortical thickness mapping in Williams Syndrome (Thompson et al. 2005)

Challenges for Manual Annotation

- 1. Large volume size for high resolution 3d MRI. (a typical size of 300x300x300)
- 2. Complex protocols for different cortical and sub-cortical structures.
- 3. Lack of efficient 3D tools for annotating the anatomical structures.
- 4. Hard to guarantee consistency among different neuroanatomists
- 5. It is very time-consuming to fully delineate the brain anatomical structures even for a single volume. (It usually takes weeks or even months.)

Complex Protocols

Surface Curve Protocol

http://www.loni.ucla.edu/~esowell/edevel/new_sulcvar.html

Compiled Image Registration, Segmentation, and Masking Protocol (5/02)

This is the protocol currently in use by EDEVEL group. (analyses: YALE, YALE2, leonard)

- Unix Commands
- Display program manual

Image Registration

Segmentation

- white matter
- gray matter
- background

Brain Masking

Challenges for Automatic Segmentation

- 1. Large volume size for high resolution 3d MRI. (a typical size of 300x300x300)
- 2. Very weak intensity patterns. (large inter-class similarity and intraclass variation)
- Hard to capture 3D shape info due to the high dimension space and limited number of training data.
- Hard to capture the high-level knowledge and adapt to different protocols.

Framework

To learn a hybrid discriminative/generative model to capture local and global shapes, and complex appearances

A Learning Based Approach

- A learning based algorithm to perform efficient and effective brain structure parsing.
- The algorithm implicitly and explicitly combines hundreds of features to model complex objects.
- It is up to the learning procedure to learn protocols from examples, and is highly adaptive.
- Has nearly no parameters to tune.
- Explicit 3D representation can represent arbitrary number of regions and perform fast surface evolution.
- Has the potential to outperform human experts.

Bayesian Model

Input:

Solution:

$$W = (R_1, R_2, ..., R_n)$$

 $p(W \mid V) \propto p(V \mid W) p(W)$

It is very hard to learn and compute the likelihood p(V|W) and prior p(W).

Discriminative v.s. Generative

For a data sample: 🚾 and its class label:

 $y \in \langle \begin{array}{ll} \{-1,+1\} & two\ class \\ \{1,2,...,n\} & multi-class \end{array}$

Positives, y=+1

Negatives, y=-1

Discriminative model: p(y|x)

Generative model: p(x|x)

$$p(x|y), \ p(y)$$

$$p(y|x) = \frac{p(x|y)p(y)}{\sum_{y} p(x|y)p(y)}$$

Discriminative v.s. Generative Models

p(y|x)

- Discriminative models are easier to learn/compute.
- They are focused on discrimination and marginal distributions.
- •Its modeling power is limited since y is just a label.
- •If you are asking, "Where are the lymph-nodes?", then you would probably want to use <u>discriminative</u> <u>methods</u>.

$p(x|y), \ p(y)$

- ·Generative models contains richer information
- They are focused on single class.
- They explain the underlying generation process
- If you are asking, "Find bone regions and describe their shapes.", then you would use generative methods.

Discriminative Models

$$E_1 = \alpha_1 \sum_{i=1}^{n} \sum_{s \in R_i} -\log p(l_s = i | V(N(s)))$$

Discriminative (classification) model based on a local volume patch.

- (1) It is capable of capturing complex appearance model based on a large context.
- (2) Has much more representational power than i.i.d models
- (3) Easy to learn and compute than a full generative model.

Features

Around 10,000 features in the candidate pool: Gradients, Curvatures, Haars

- (1) Very fast to compute using integral volume.
- (2) Combine information at different scales.

Discriminative Models

input

 $p(l_s = 1 | V(N(s))|$

classification

 $p(l_s | V(N(s)))$

Shape PCA Priors

- 1. Building priors on 3D shapes is challenging.
- 2. Signed distance maps give an easy implementation.

Hybrid Discriminative/Generative Models

$$E = \alpha_1 \sum_{i=1}^{n} \sum_{s \in R_i} -\log p(v_s, l_s = i | V(N/s)) +$$

pseudo-likelihood appearance model

$$\alpha_2 \sum_{i=2}^n -\log p_{PCA}(S_i) +$$

$$\alpha_3 \sum_{i=1}^n -\Lambda(S_i)$$

global shape prior

local smoothness prior

3D Representation

Surface Evolution

The Algorithm

Training (given a set of annotated volumes):

- (1) Learn multi-class classification model using PBT.
- (2) Learn PCA shape model for each structure.

$$E = \alpha_1 \sum_{i=1}^{n} \sum_{s \in R_i} -\log p(l_s = i \mid V(N(s)) + \alpha_2 \sum_{i=2} -\log p(S_i) + \alpha_3 \sum_{i=1} -\Lambda(S_i)$$

Testing (given a volume)

- Compute classification using learned PBT.
- 2. Obtain the initial segmentation.
- Perform region competition based on the proposed
 3D representation.

Results

Step=1

Step=2

Step=2

Results on The Training Data

Manual annotation

Automatic segmentation

Results on The Testing Data

Manual annotation

Automatic segmentation

Results on The Testing Data

Manual annotation

Automatic segmentation

Evaluation

nces mean variance
1.872 0.532
2.213 0.517
1.303 0.244
1.332 0.361
2.474 0.780
2.006 0.390
1.117 0.386
0.994 0.131

testing	precision	recall	Hausdorff distances	mean variance
Left Hippocampus	0.686	0.766	6.729 12.082	2.039 0.365
Right Hippocampus	0.620	0.644	14.284 13.576	2.835 1.105
Left Caudate	0.842	0.806	7.961 8.123	1.463 0.327
Right Caudate	0.811	0.825	6.694 8.525	1.443 0.290
Left Puteman	0.746	0.682	10.155 10.594	2.606 0.832
Right Puteman	0.751	0.721	10.079 9.443	2.377 0.762
Left Ventricle	0.904	0.808	6.345 11.432	1.102 0.260
Right Ventricle	0.897	0.813	6.904 14.675	1.097 0.239

Automatic Sulci Detection

Results True Result Prob Results on Training set: Central sulcus

Results on Surfaces Prob

True

Results on Training set: central sulci on surface

Evaluation

$$H(C,G) = \max_{c \in C} \min_{g \in G} \|c - g\|, H_{av}(C,G) = \frac{1}{|C|} \sum_{c \in C} \min_{g \in G} \|c - g\|$$

Dataset	$\langle H_{av}(C_i,G_i) \rangle$	$\langle H_{av}(G,C) \rangle$	$\langle H_{wor}(C,G) \rangle$
Testing (Central on MRI)	2.7374	3.4614	7.5356
Central (Central on MRI)	3.7643	4.2176	8.5567
Testing (Superior Frontal on MRI)	4.2634	4.5982	12.0444
Training (Superior Frontal on MRI)	4.0973	4.4664	8.9999
Testing (Central on surface)	2.7937	3.0723	9.4791
Training (Central on surface)	2.4393	2.8869	8.4413

- 1. It is a general framework and it works either on MRI volumes or extracted surfaces.
- 2. There is nearly no parameter to tune and learns the discriminative models from examples.
- 3. Does not need to specify which major cortical sulcus.
- No segmentation is needed, nor the process of mapping to a canonical view.
- 5. The algorithm is robust and fast.